
 Chapter 5 – Cloud Resource

 Virtualization

Contents

 Virtualization.

 Layering and virtualization.

 Virtual machine monitor.

 Virtual machine.

 Performance and security isolation.

 Architectural support for virtualization.

 x86 support for virtualization.

 Full and paravirtualization.

 Xen 1.0 and Xen 2.0.

 Performance comparison of virtual machine monitors.

 The darker side of virtualization.

 Software fault isolation.

Cloud Computing: Theory and Practice. Chapter 5 2 Dan C. Marinescu

Motivation

 There are many physical realizations of the fundamental

abstractions necessary to describe the operation of a computing

systems.

 Interpreters.

 Memory.

 Communications links.

 Virtualization is a basic tenet of cloud computing, it simplifies the

management of physical resources for the three abstractions.

 The state of a virtual machine (VM) running under a virtual machine

monitor (VMM) can de saved and migrated to another server to

balance the load.

 Virtualization allows users to operate in environments they are

familiar with, rather than forcing them to idiosyncratic ones.

Cloud Computing: Theory and Practice.

Chapter 5 3 Dan C. Marinescu

Motivation (cont’d)

 Cloud resource virtualization is important for:

 System security, as it allows isolation of services running on

the same hardware.

 Performance and reliability, as it allows applications to migrate

from one platform to another.

 The development and management of services offered by a

provider.

 Performance isolation.

Cloud Computing: Theory and Practice.

Chapter 5 4 Dan C. Marinescu

Virtualization

 Simulates the interface to a physical object by:

 Multiplexing: creates multiple virtual objects from one instance

of a physical object. Example - a processor is multiplexed

among a number of processes or threads.

 Aggregation: creates one virtual object from multiple physical

objects. Example - a number of physical disks are aggregated

into a RAID disk.

 Emulation: constructs a virtual object from a different type of a

physical object. Example - a physical disk emulates a Random

Access Memory (RAM).

 Multiplexing and emulation. Examples - virtual memory with

paging multiplexes real memory and disk; a virtual address

emulates a real address.

Cloud Computing: Theory and Practice.

Chapter 5 5 Dan C. Marinescu

Layering

 Layering – a common approach to manage system complexity.

 Minimizes the interactions among the subsystems of a complex

system.

 Simplifies the description of the subsystems; each subsystem is

abstracted through its interfaces with the other subsystems.

 We are able to design, implement, and modify the individual

subsystems independently.

 Layering in a computer system.

 Hardware.

 Software.

 Operating system.

 Libraries.

 Applications.

 Cloud Computing: Theory and Practice.

Chapter 5 6 Dan C. Marinescu

Interfaces

 Instruction Set Architecture (ISA) – at the boundary between

hardware and software.

 Application Binary Interface (ABI) – allows the ensemble consisting

of the application and the library modules to access the hardware;

the ABI does not include privileged system instructions, instead it

invokes system calls.

 Application Program Interface (API) - defines the set of instructions

the hardware was designed to execute and gives the application

access to the ISA; it includes HLL library calls which often invoke

system calls.

Cloud Computing: Theory and Practice.

Chapter 5 7 Dan C. Marinescu

Cloud Computing: Theory and Practice.

Chapter 5 8 Dan C. Marinescu

Application Programming Interface, Application Binary Interface,

and Instruction Set Architecture . An application uses library

functions (A1), makes system calls (A2), and executes machine

instructions (A3).

Hardware

Operating System

ISA

Libraries

ABI

API

System calls

Applications

System ISA User ISA

A1

A2

A3

Code portability

 Binaries created by a compiler for a specific ISA and a specific

operating systems are not portable.

 It is possible, though, to compile a HLL program for a virtual

machine (VM) environment where portable code is produced

and distributed and then converted by binary translators to the

ISA of the host system.

 A dynamic binary translation converts blocks of guest

instructions from the portable code to the host instruction and

leads to a significant performance improvement, as such blocks

are cached and reused

Cloud Computing: Theory and Practice.

Chapter 5 9 Dan C. Marinescu

Cloud Computing: Theory and Practice.

Chapter 5 10 Dan C. Marinescu

Compiler front-end

Intermediate

code

HLL code

Compiler

Portable

code

Compiler back-end

Object code

Loader

Memory

image

VM loader

VM compiler/

interpreter

VM image

VM compiler/

interpreter

Memory

image ISA-1

Memory

image ISA-2

Virtual machine monitor (VMM / hypervisor)

 Partitions the resources of computer system into one or more virtual

machines (VMs). Allows several operating systems to run

concurrently on a single hardware platform.

 A VMM allows

 Multiple services to share the same platform.

 Live migration - the movement of a server from one platform to

another.

 System modification while maintaining backward compatibility

with the original system.

 Enforces isolation among the systems, thus security.

Cloud Computing: Theory and Practice.

Chapter 5 11 Dan C. Marinescu

VMM virtualizes the CPU and the memory

 A VMM

 Traps the privileged instructions executed by a guest OS and

enforces the correctness and safety of the operation.

 Traps interrupts and dispatches them to the individual guest

operating systems.

 Controls the virtual memory management.

 Maintains a shadow page table for each guest OS and replicates

any modification made by the guest OS in its own shadow page

table. This shadow page table points to the actual page frame

and it is used by the Memory Management Unit (MMU) for

dynamic address translation.

 Monitors the system performance and takes corrective actions to

avoid performance degradation. For example, the VMM may

swap out a Virtual Machine to avoid thrashing.

Cloud Computing: Theory and Practice.

Chapter 5 12 Dan C. Marinescu

Virtual machines (VMs)

 VM - isolated environment that appears to be a whole computer,

but actually only has access to a portion of the computer

resources.

 Process VM - a virtual platform created for an individual process

and destroyed once the process terminates.

 System VM - supports an operating system together with many

user processes.

 Traditional VM - supports multiple virtual machines and runs

directly on the hardware.

 Hybrid VM - shares the hardware with a host operating system and

supports multiple virtual machines.

 Hosted VM - runs under a host operating system.

Cloud Computing: Theory and Practice.

Chapter 5 13 Dan C. Marinescu

 Traditional, hybrid, and hosted VMs

Cloud Computing: Theory and Practice.

Chapter 5 14 Dan C. Marinescu

VMM

Hardware

A
p

p
lic

a
ti
o

n

Application

Guest OS

Host OS

A
p

p
lic

a
ti
o

n

A
p

p
lic

a
ti
o

n

Hardware

Host OS

Virtual Machine Monitor

VM-1

Application

Guest OS -1

VM-n

Application

Guest OS -n

(c) (d)

Virtual Machine Monitor

Hardware

(b)

Application

VM-n

Guest

OS -n

VM-1

Application

Guest

OS -1

(a)

System VMs

Traditional

VM

Hybrid VM

Hosted VM

Process VMs

Whole

system VM

Codesigned

VM

Dynamic

translators

HLL VMs
Binary

optimizers

Multi

program

Same ISASame ISA Different ISADifferent ISA

Cloud Computing: Theory and Practice.

Chapter 5 15 Dan C. Marinescu

Performance and security isolation

 The run-time behavior of an application is affected by other

applications running concurrently on the same platform and

competing for CPU cycles, cache, main memory, disk and network

access. Thus, it is difficult to predict the completion time!

 Performance isolation - a critical condition for QoS guarantees in

shared computing environments.

 A VMM is a much simpler and better specified system than a

traditional operating system. Example - Xen has approximately

60,000 lines of code; Denali has only about half, 30,000.

 The security vulnerability of VMMs is considerably reduced as the

systems expose a much smaller number of privileged functions.

Cloud Computing: Theory and Practice.

Chapter 5 16 Dan C. Marinescu

Computer architecture and virtualization

 Conditions for efficient virtualization:

 A program running under the VMM should exhibit a behavior

essentially identical to that demonstrated when running on an

equivalent machine directly.

 The VMM should be in complete control of the virtualized resources.

 A statistically significant fraction of machine instructions must be

executed without the intervention of the VMM.

 Two classes of machine instructions:

 Sensitive - require special precautions at execution time:

 Control sensitive - instructions that attempt to change either the

memory allocation or the privileged mode.

 Mode sensitive - instructions whose behavior is different in the

privileged mode.

 Innocuous - not sensitive.

Cloud Computing: Theory and Practice.

Chapter 5 17 Dan C. Marinescu

Full virtualization and paravirtualization

 Full virtualization – a guest OS can run unchanged under the VMM

as if it was running directly on the hardware platform.

 Requires a virtualizable architecture.

 Examples: Vmware.

 Paravirtualization - a guest operating system is modified to use only

instructions that can be virtualized. Reasons for paravirtualization:

 Some aspects of the hardware cannot be virtualized.

 Improved performance.

 Present a simpler interface.

Examples: Xen, Denaly

Cloud Computing: Theory and Practice.

Chapter 5 18 Dan C. Marinescu

Full virtualization and paravirtualization

Cloud Computing: Theory and Practice.

Chapter 5 19 Dan C. Marinescu

Guest OS

Hypervisor

Hardware

abstraction

layer

Hardware

Guest OS

Hypervisor

Hardware

abstraction

layer

Hardware

(a) Full virtualization (b) Paravirtualization

Virtualization of x86 architecture

 Ring de-privileging - a VMMs forces the operating system and the

applications to run at a privilege level greater than 0.

 Ring aliasing - a guest OS is forced to run at a privilege level other

than that it was originally designed for.

 Address space compression - a VMM uses parts of the guest

address space to store several system data structures.

 Non-faulting access to privileged state - several store instructions

can only be executed at privileged level 0 because they operate on

data structures that control the CPU operation. They fail silently

when executed at a privilege level other than 0.

 Guest system calls which cause transitions to/from privilege level 0

must be emulated by the VMM.

 Interrupt virtualization - in response to a physical interrupt, the VMM

generates a ``virtual interrupt'' and delivers it later to the target guest

OS which can mask interrupts.

 Cloud Computing: Theory and Practice.

Chapter 5 20 Dan C. Marinescu

Virtualization of x86 architecture (cont’d)

 Access to hidden state - elements of the system state, e.g.,

descriptor caches for segment registers, are hidden; there is no

mechanism for saving and restoring the hidden components when

there is a context switch from one VM to another.

 Ring compression - paging and segmentation protect VMM code

from being overwritten by guest OS and applications. Systems

running in 64-bit mode can only use paging, but paging does not

distinguish between privilege levels 0, 1, and 2, thus the guest OS

must run at privilege level 3, the so called (0/3/3) mode. Privilege

levels 1 and 2 cannot be used thus, the name ring compression.

 The task-priority register is frequently used by a guest OS; the

VMM must protect the access to this register and trap all attempts

to access it. This can cause a significant performance degradation.

Cloud Computing: Theory and Practice.

Chapter 5 21 Dan C. Marinescu

VT-x, a major architectural enhancement

 Supports two modes of operations:

 VMX root - for VMM operations.

 VMX non-root - support a VM.

 The Virtual Machine Control Structure including host-state and

guest-state areas.
 VM entry - the processor state is loaded from the guest-state of the VM

scheduled to run; then the control is transferred from VMM to the VM.

 VM exit - saves the processor state in the guest-state area of the

running VM; then it loads the processor state from the host-state area,

finally transfers control to the VMM.

Cloud Computing: Theory and Practice.

Chapter 5 22 Dan C. Marinescu

VT- x

Cloud Computing: Theory and Practice.

Chapter 5 23 Dan C. Marinescu

VMX root VMX non-root

VM entry

VM exit

Virtual-machine control structure

(a) (b)

host-state

guest-state

VT-d, a new virtualization architecture

 I/O MMU virtualization gives VMs direct access to

peripheral devices.

 VT-d supports:

 DMA address remapping, address translation for device DMA

transfers.

 Interrupt remapping, isolation of device interrupts and VM

routing.

 I/O device assignment, the devices can be assigned by an

administrator to a VM in any configurations.

 Reliability features, it reports and records DMA and interrupt

errors that my otherwise corrupt memory and impact VM

isolation.

Cloud Computing: Theory and Practice.

Chapter 5 24 Dan C. Marinescu

Xen - a VMM based on paravirtualization

 The goal of the Cambridge group - design a VMM capable of scaling

to about 100 VMs running standard applications and services

without any modifications to the Application Binary Interface (ABI).

 Linux, Minix, NetBSD, FreeBSD, NetWare, and OZONE can operate

as paravirtualized Xen guest OS running on x86, x86-64, Itanium,

and ARM architectures.

 Xen domain - ensemble of address spaces hosting a guest OS and

applications running under the guest OS. Runs on a virtual CPU.

 Dom0 - dedicated to execution of Xen control functions and privileged

instructions.

 DomU - a user domain.

 Applications make system calls using hypercalls processed

by Xen; privileged instructions issued by a guest OS are

paravirtualized and must be validated by Xen.

Cloud Computing: Theory and Practice.

Chapter 5 25 Dan C. Marinescu

Xen

Cloud Computing: Theory and Practice.

Chapter 5 26 Dan C. Marinescu

X86 hardware

Domain0 control

interface
Virtual x86

CPU

Virtual physical

memory
Virtual network

Virtual block

devices

Xen

Management

OS

Xen-aware

device drivers

Application Application Application

Guest OS

Xen-aware

device drivers

Guest OS

Xen-aware

device drivers

Xen-aware

device drivers

Guest OS

Xen-aware

device drivers

Xen implementation on x86 architecture

 Xen runs at privilege Level 0, the guest OS at Level 1, and

applications at Level 3.

 The x86 architecture does not support either the tagging of TLB

entries or the software management of the TLB. Thus, address

space switching, when the VMM activates a different OS, requires a

complete TLB flush; this has a negative impact on the performance.

 Solution - load Xen in a 64 MB segment at the top of each address

space and delegate the management of hardware page tables to

the guest OS with minimal intervention from Xen. This region is not

accessible or re-mappable by the guest OS.

 Xen schedules individual domains using the Borrowed Virtual Time

(BVT) scheduling algorithm.

 A guest OS must register with Xen a description table with the

addresses of exception handlers for validation.

Cloud Computing: Theory and Practice.

Chapter 5 27 Dan C. Marinescu

Dom0 components

 XenStore – a Dom0 process.

 Supports a system-wide registry and naming service.

 Implemented as a hierarchical key-value storage.

 A watch function informs listeners of changes of the key in storage

they have subscribed to.

 Communicates with guest VMs via shared memory using Dom0

privileges.

 Toolstack - responsible for creating, destroying, and managing the

resources and privileges of VMs.

 To create a new VM, a user provides a configuration file describing

memory and CPU allocations and device configurations.

 Toolstack parses this file and writes this information in XenStore.

 Takes advantage of Dom0 privileges to map guest memory, to load a

kernel and virtual BIOS and to set up initial communication channels

with XenStore and with the virtual console when a new VM is created.

Cloud Computing: Theory and Practice.

Chapter 5 28 Dan C. Marinescu

Strategies for virtual memory management, CPU multiplexing, and

I/O devices

Cloud Computing: Theory and Practice.

Chapter 5 29 Dan C. Marinescu

Xen abstractions for networking and I/O

 Each domain has one or more Virtual Network Interfaces (VIFs)

which support the functionality of a network interface card. A VIF is

attached to a Virtual Firewall-Router (VFR).

 Split drivers have a front-end in the DomU and the back-end in

Dom0; the two communicate via a ring in shared memory.

 Ring - a circular queue of descriptors allocated by a domain and

accessible within Xen. Descriptors do not contain data, the data

buffers are allocated off-band by the guest OS.

 Two rings of buffer descriptors, one for packet sending and one for

packet receiving, are supported.

 To transmit a packet:

 a guest OS enqueues a buffer descriptor to the send ring,

 then Xen copies the descriptor and checks safety,

 copies only the packet header, not the payload, and

 executes the matching rules.

Cloud Computing: Theory and Practice.

Chapter 5 30 Dan C. Marinescu

Xen zero-copy semantics for data transfer using I/O rings. (a) The communication

between a guest domain and the driver domain over an I/O and an event channel;

NIC is the Network Interface Controller. (b) the circular ring of buffers.

Cloud Computing: Theory and Practice.

Chapter 5 31 Dan C. Marinescu

Consumer Request

(private pointer in Xen)

Producer Request

(shared pointer updated

by the guest OS)

Producer Response

(shared pointer updated

by Xen)

Consumer Response

(private pointer maintained by

the guest OS)Response queue

Request queue

Unused

descriptors

Outstanding

descriptors

Bridge

Driver domain Guest domain

Backend
Frontend

XEN

Network

interface

NIC

(a)

(b)

I/O channel

Event channel

Xen 2.0

 Optimization of:

 Virtual interface - takes advantage of the capabilities of some

physical NICs, such as checksum offload.

 I/O channel - rather than copying a data buffer holding a packet,

each packet is allocated in a new page and then the physical

page containing the packet is re-mapped into the target domain.

 Virtual memory - takes advantage of the superpage and global

page mapping hardware on Pentium and Pentium Pro

processors. A superpage entry covers 1,024 pages of physical

memory and the address translation mechanism maps a set of

contiguous pages to a set of contiguous physical pages. This

helps reduce the number of TLB misses.

Cloud Computing: Theory and Practice.

Chapter 5 32 Dan C. Marinescu

Xen network architecture .(a) The original architecture;

(b) The optimized architecture

Cloud Computing: Theory and Practice.

Chapter 5 33 Dan C. Marinescu

Driver domain Guest domain

Virtual

Interface
Backend

Interface

NIC

Driver

Physical

NIC
Xen VMM

Bridge

(a)

Driver domain Guest domain

High Level

Virtual

Interface

Backend

Interface

NIC

Driver

Physical

NIC
Xen VMM

(b)

I/O

channel

I/O

channel

Offload

Driver

Bridge

A comparison of send and receive data rates for a native Linux system, the Xen

driver domain, an original Xen guest domain, and an optimized Xen guest domain.

Cloud Computing: Theory and Practice.

Chapter 5 34 Dan C. Marinescu

Performance comparison of virtual machines

 Compare the performance of Xen and OpenVZwith, a standard

operating system, a plain vanilla Linux.

 The questions examined are:

 How the performance scales up with the load?

 What is the impact of a mix of applications?

 What are the implications of the load assignment on individual

servers?

 The main conclusions:

 The virtualization overhead of Xen is considerably higher than that of

OpenVZ and that this is due primarily to L2-cache misses.

 The performance degradation when the workload increases is also

noticeable for Xen.

 Hosting multiple tiers of the same application on the same server is

not an optimal solution.

Cloud Computing: Theory and Practice.

Chapter 5 35 Dan C. Marinescu

The setup for the performance comparison of a native Linux system with OpenVZ, and

the Xen systems. The applications are a web server and a MySQL database server. (a)

The first experiment, the web and the DB, share a single system; (b) The second

experiment, the web and the DB, run on two different systems; (c) The third experiment,

the web and the DB, run on two different systems and each has four instances.

Cloud Computing: Theory and Practice.

Chapter 5 36 Dan C. Marinescu

Web

server

Web

server

Web

server

Web

server

MySQL

server

MySQL

server

MySQL

server

MySQL

server

Web

server

MySQL

server

Web

server

MySQL

server

Web

server

MySQL

server
Web

server

MySQL

server
Web

server

MySQL

server

Web

server

Web

server

Web

server

Web

server

MySQL

server

MySQL

server

MySQL

server

MySQL

server

Web

server

Web

server

Web

server

Web

server

MySQL

server

MySQL

server

MySQL

server

MySQL

server

Web

server

MySQL

server

Xen

Xen

Xen

Linux

Linux

Linux

OpenVZ

OpenVZ

OpenVZ

(a)

(b)

(c)

The darker side of virtualization

 In a layered structure, a defense mechanism at some layer can be

disabled by malware running at a layer below it.

 It is feasible to insert a rogue VMM, a Virtual-Machine Based Rootkit

(VMBR) between the physical hardware and an operating system.

 Rootkit - malware with a privileged access to a system.

 The VMBR can enable a separate malicious OS to run

surreptitiously and make this malicious OS invisible to the guest OS

and to the application running under it.

 Under the protection of the VMBR, the malicious OS could:

 observe the data, the events, or the state of the target system.

 run services, such as spam relays or distributed denial-of-service

attacks.

 interfere with the application.

Cloud Computing: Theory and Practice.

Chapter 5 37 Dan C. Marinescu

The insertion of a Virtual-Machine Based Rootkit (VMBR) as the lowest

layer of the software stack running on the physical hardware; (a) below an

operating system; (b) below a legitimate virtual machine monitor. The

VMBR enables a malicious OS to run surreptitiously and makes it invisible

to the genuine or the guest OS and to the application.

Cloud Computing: Theory and Practice.

Chapter 5 38 Dan C. Marinescu

Hardware

Virtual machine based rootkit

Operating

system (OS)

Application

Hardware

 Virtual machine monitor

Guest OS

Application

Virtual machine based rootkit

(a) (b)

Malicious

OS

Malicious

OS

The features of the SFI for the Native Client on the x86-32, x86-64 , and ARM.

Cloud Computing: Theory and Practice.

Chapter 5 39 Dan C. Marinescu

